Left Termination of the query pattern
p_in_2(g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
p(d(e(t)), const(1)).
p(d(e(const(A))), const(0)).
p(d(e(+(X, Y))), +(DX, DY)) :- ','(p(d(e(X)), DX), p(d(e(Y)), DY)).
p(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) :- ','(p(d(e(X)), DX), p(d(e(Y)), DY)).
p(d(d(X)), DDX) :- ','(p(d(X), DX), p(d(e(DX)), DDX)).
Queries:
p(g,a).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x3, x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x4)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x3, x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x4)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, p_in_ga(d(e(X))))
P_IN_GA(d(e(*(X, Y)))) → P_IN_GA(d(e(X)))
The remaining pairs can at least be oriented weakly.
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
Used ordering: Polynomial interpretation [25]:
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(P_IN_GA(x1)) = x1
POL(U1_GA(x1, x2)) = x1
POL(U1_ga(x1, x2)) = 0
POL(U2_ga(x1, x2)) = 0
POL(U3_GA(x1, x2, x3)) = x2
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(e(x1)) = x1
POL(p_in_ga(x1)) = 0
POL(p_out_ga(x1)) = 0
POL(t) = 0
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U3_GA(X, Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The remaining pairs can at least be oriented weakly.
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
Used ordering: Polynomial interpretation [25]:
POL(*(x1, x2)) = 0
POL(+(x1, x2)) = 1 + x1 + x2
POL(0) = 0
POL(1) = 0
POL(P_IN_GA(x1)) = x1
POL(U1_GA(x1, x2)) = x1
POL(U1_ga(x1, x2)) = 0
POL(U2_ga(x1, x2)) = 0
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(e(x1)) = x1
POL(p_in_ga(x1)) = 0
POL(p_out_ga(x1)) = 0
POL(t) = 0
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
U1_GA(Y, p_out_ga(DX)) → P_IN_GA(d(e(Y)))
P_IN_GA(d(e(+(X, Y)))) → P_IN_GA(d(e(X)))
The remaining pairs can at least be oriented weakly.
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U2_ga(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( *(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U4_ga(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( U1_ga(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( +(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U3_ga(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( U1_GA(x1, x2) ) = | 1 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
none
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, p_in_ga(d(e(X))))
The TRS R consists of the following rules:
p_in_ga(d(e(t))) → p_out_ga(const(1))
p_in_ga(d(e(const(A)))) → p_out_ga(const(0))
p_in_ga(d(e(+(X, Y)))) → U1_ga(Y, p_in_ga(d(e(X))))
p_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, p_in_ga(d(e(X))))
U1_ga(Y, p_out_ga(DX)) → U2_ga(DX, p_in_ga(d(e(Y))))
U3_ga(X, Y, p_out_ga(DX)) → U4_ga(X, Y, DX, p_in_ga(d(e(Y))))
U2_ga(DX, p_out_ga(DY)) → p_out_ga(+(DX, DY))
U4_ga(X, Y, DX, p_out_ga(DY)) → p_out_ga(+(*(X, DY), *(Y, DX)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X))) → P_IN_GA(d(X))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_GA(d(d(X))) → P_IN_GA(d(X))
The graph contains the following edges 1 > 1
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x2, x3, x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x1, x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, p_in_ga(d(X), DX))
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
U5_GA(X, DDX, p_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, p_out_ga(d(X), DX)) → P_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x2, x3, x5)
U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U5_GA(x1, x2, x3) = U5_GA(x1, x3)
U4_GA(x1, x2, x3, x4, x5) = U4_GA(x1, x2, x4, x5)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
P_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → P_IN_GA(d(e(X)), DX)
P_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
U1_GA(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
U3_GA(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → P_IN_GA(d(e(Y)), DY)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5) = U1_GA(x1, x2, x5)
U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x2, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
The TRS R consists of the following rules:
p_in_ga(d(e(t)), const(1)) → p_out_ga(d(e(t)), const(1))
p_in_ga(d(e(const(A))), const(0)) → p_out_ga(d(e(const(A))), const(0))
p_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, p_in_ga(d(e(X)), DX))
p_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, p_in_ga(d(e(X)), DX))
p_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, p_in_ga(d(X), DX))
U5_ga(X, DDX, p_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, p_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, p_out_ga(d(e(DX)), DDX)) → p_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, p_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, p_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, p_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, p_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, p_out_ga(d(e(Y)), DY)) → p_out_ga(d(e(+(X, Y))), +(DX, DY))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
d(x1) = d(x1)
e(x1) = e(x1)
t = t
p_out_ga(x1, x2) = p_out_ga(x1, x2)
const(x1) = const(x1)
+(x1, x2) = +(x1, x2)
U1_ga(x1, x2, x3, x4, x5) = U1_ga(x1, x2, x5)
*(x1, x2) = *(x1, x2)
U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x2, x5)
U5_ga(x1, x2, x3) = U5_ga(x1, x3)
U6_ga(x1, x2, x3, x4) = U6_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5) = U4_ga(x1, x2, x4, x5)
U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x2, x3, x5)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(d(d(X)), DDX) → P_IN_GA(d(X), DX)
R is empty.
The argument filtering Pi contains the following mapping:
d(x1) = d(x1)
P_IN_GA(x1, x2) = P_IN_GA(x1)
We have to consider all (P,R,Pi)-chains